
www.manaraa.com

August 31, 2008

SYMBOLIC COMPUTATION SOFTWARE COMPOSABILITY
PROTOCOL (SCSCP) SPECIFICATION

VERSION 1.2

S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

Contents

1. Introduction 1
2. Semantic descriptions 3
2.1. Messages to CAS 3
2.2. Messages from CAS 4
2.3. Allowed sequences of messages 4
3. Special Procedures 5
3.1. Determining the list of supported procedures 5
3.2. Operations with remote objects 6
4. Technical descriptions 6
4.1. Messages to CAS 6
4.2. Messages from CAS 7
5. Reference Implementation 9
5.1. Connection Initiation 9
5.2. Ongoing message exchange 11
5.3. Interrupt 12
5.4. Other ways of implementation 12
6. Appendix A. 13
7. Appendix B. 14
8. Appendix C. 18
References 23

1. Introduction

This document specifies the requirements for the software to be developed by
the NA3 activity of the SCIEnce project for the subsequent usage in the NA3 and
JRA1 activities.

The project 026133 ”SCIEnce - Symbolic Computation Infrastructure in Europe” is supported
by the EU FP6 Programme.

1

www.manaraa.com

2 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

Specifically it describes a protocol by which a CAS may offer services and a
client may employ them. This protocol is called the Symbolic Computation Software
Composability Protocol, or SCSCP. We envisage clients for this protocol including:

• A Web server which passes on the same services as Web services using
SOAP/HTTP to a variety of possible clients;

• Grid middleware;
• Another instance of the same CAS (in a parallel computing context);
• Another CAS running on the same system.

Note that the specification assumes two possible ways of implementation. One
is the standard socket-based implementation, where a CAS can talk locally or re-
motely via ports, as described in the section 5, in fact an SCSCP service rather
then a Web service. The other implementation is a proper Web service using stan-
dard SOAP/HTTP wrappings for SCSCP messages. In the SCSCP specification we
will use the term Web services in the broad sense, meaning both kinds of symbolic
computation services.

Our vision of the SCSCP usage is described on the following scheme.

CAS 3

SCSCP
server

OpenMath
functionality

CAS 1

Web
service
client

Web
services
server

Server
backend

=
SCSCP
client

CAS 2

SCSCP
client

Grid
middle-
ware

Web
service
client

Grid
middle-
ware

SCSCP
client

SCSCP messages

SCSCP messages

SCSCP
messages

Interrupt signal

Interrupt signal

HTTP/SOAP
requests

HTTP/SOAP
requests

Interrupt
signal

Figure 1. SCSCP usage.

In Section 2 we describe the meaning of all possible messages that can appear
during communication between various software and the allowed sequences of such
messages. In Section 4 we specify how these messages are encoded as OpenMath
objects. Finally in Section 5 we describe one solution (suitable for UNIX systems,
at least) for the practical problems of establishing a connection and delivering these
messages.

In Appendix A we specify the list of necessary OpenMath symbols. Examples
of OpenMath messages are given in Appendix B.

www.manaraa.com

SCSCP SPECIFICATION 3

List of abbreviations used in the document:
CAS: Computer Algebra System
CD: Content Dictionary
OM: OpenMath
PI: processing instruction (in XML)
SCSCP: Symbolic Computation Software Composability Protocol
WS: Web Service
WSDL: Web Services Description Language

2. Semantic descriptions

2.1. Messages to CAS.

2.1.1. Procedure call. This is an OM message containing the following information:
• Procedure name - the name of the procedure registered as a web-service;
• Arguments - arguments that will be passed to the procedure being called;

(Remark: we treat procedure options, i.e. guidance options for used algo-
rithms, as arguments as well);

• Options/Attributes - attributes and options that will specify the behaviour
of the system:

– call identifier;
– type of action performed with the result:

∗ storing the result at the CAS side and returning a cookie refer-
ring to it;

∗ returning the result of the procedure (that may involve actual
computation or retrieving previously stored result);

∗ not responding to the client;
– procedure runtime limit;
– minimal/maximal memory limits;
– debugging level, determining degree of output detail;
– other options that might appear during the development; may be sys-

tem dependent.
There are some standard procedures pre-defined in Section 3. Besides this, in

order to provide specific SCSCP services, the service provider should develop and
make available own customized procedures, which may range from generic services
(e.g. we may imagine some procedure named like EVALUATE OMOBJ to evaluate
given OM object) to specific (e.g. compute the determinant of a matrix).

2.1.2. Interrupt signal. This signal can be sent to the CAS at any time, and should
be processed “out-of-band”. That is, it should be processed as soon as possible,
and not wait behind other messages that may have been sent or received before it
and are unprocessed.

This message implies that the results of the computation currently being per-
formed are not needed,so the CAS need not complete the computation. If the
CAS chooses not to complete the calculation it should send a Procedure terminated
message reporting this.

There are some obvious and undesirable race conditions associated with this
message, since the computation being performed when it is received may not be
the one the client expects to be being performed. Ideally the solution would be for
this message to carry the identity of the procedure call to be interrupted, but it is

www.manaraa.com

4 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

significantly easier to deliver an out-of-band message with no content than one with
content, so, for the time being, we ignore this problem. The client can, at least,
detect when this has happened by watching the message stream from the CAS.

Note that it is always correct for a CAS to ignore an interrupt, and that this
may be appropriate when procedure calls are quick. It is assumed that this option
will be regulated by the WS provider.

2.2. Messages from CAS.

2.2.1. Procedure completed. This is an OM message containing the information
about the result of the procedure:

• Result value - if the procedure returns result, it must be contained in this
section of the message. If the procedure only produces side-effect, such
section is not necessary, since this message itself acts as a signal about its
successful completion;

• Additional information
– call identifier;
– procedure runtime;
– memory used;
– other information that we might need (may be system dependent).

2.2.2. Procedure terminated. This is an OM message that acts as a signal about
procedure termination. It must contain the following debugging information:

• if termination was caused by the CAS, then it must carry the original
message from the CAS running as a WS;

• if termination was caused by another standard error, then it must carry the
description of this error, in particular:

– can not compute OM object;
– invalid cookie (the object does not exist);
– terminated by interrupt;
– procedure not supported;
– ran out of resource (time or memory);

• call identifier;
• procedure runtime before termination;
• memory used (if available);
• other information that we might need (may be system dependent).

2.3. Allowed sequences of messages. Once a connection has been established
and any initial technical information exchanged (the mechanism for which is part of
an implementation of this protocol and addressed in section 5) the SCSCP session
is considered to be opened.

Until the end of the session, the communication from client to CAS is a stream of
procedure calls and the response is a stream of procedure completed and/or proce-
dure terminated messages. The client is permitted to send as many procedure calls
as it likes, subject to the buffering capabilities of the channel used in a particular
implementation. The CAS must process them in sequence and send either a pro-
cedure completed, or a procedure terminated message (but not both) for each. As
a convenience and to assist debugging, the calls and responses are also associated
via the call_ID attribute.

www.manaraa.com

SCSCP SPECIFICATION 5

Apart from this, the client can send an interrupt message to the CAS. The
interrupt message can be sent to the CAS at any time and should be delivered and
acted on immediately. It entitles the CAS to stop processing the current procedure
call and respond to it with a suitable procedure terminated message.

3. Special Procedures

This section documents certain predefined procedures which every compliant
client is expected to support. OpenMath symbols corresponding to these procedures
are defined in the scscp2 Content Dictionary [2].

3.1. Determining the list of supported procedures.

3.1.1. Representing Collections of OpenMath Symbols. A number of the procedures
defined in this section return values which are intended to represent sets of OM
symbols. For convenience, we define a standard way of representing these sets.

Such sets should be represented as applications of the symbol symbol_set which
may take any number of arguments. Each of those arguments should be one of
three things:

(1) An OpenMath symbol, representing itself
(2) An application of one of symbols CDName or CDURL from the meta CD,

representing all the symbols in the referenced CD.
(3) An application of one of the symbols CDGroupName or CDGroupURL from the

metagrp CD, representing all the symbols in all CDs in the referenced CD
group.

As an alternative, the symbol symbol_set_all can be used, to represent the set
of all OpenMath symbols from any CD.

3.1.2. Transient CDs. In describing its allowed procedure calls according to the
conventions of this section, a server is permitted to refer to symbols from CDs with
names beginning SCSCP_transient_. These are content dictionaries defined by
this server, and valid only for the duration of the session. If needed, the client can
request these CDs using the get_transient_cd procedure (see below).

3.1.3. Requesting the Allowed Procedure Names. The first standard procedure de-
fined in this section is get_allowed_heads, which takes no arguments. This re-
turns, in the above format, the set of OpenMath symbols which might be allowed
to appear as “head” symbol (ie first child of the outermost <OMA>) in an SCSCP
procedure call to this server. These may be symbols from standard OpenMath CDs
or from transient CDs as described above. Note that it is acceptable (although not
necessarily desirable) for a server to “overstate” the set of symbols it accepts and
use standard OpenMath errors to reject requests later.

3.1.4. Requesting Signature Information. The standard procedure get_signature
takes one argument – an OpenMath symbol. If the supplied symbol is one of
those accepted as a head symbol by the server then it returns an application of the
signature symbol. This symbol takes four arguments:

• an OpenMath symbol which signature is described;
• a minimum number of children (min);
• a maximum number of children (max), which can be the infinity symbol

from the nums1);

www.manaraa.com

6 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

• a set of symbols, represented as an application of the symbol symbol_set,
or a list of symbol_sets:

– if the list of symbol_sets is given, than its i-th entry corresponds to
the i-th child;

– if just one symbol_set is given, it is interpreted as meaning that the
symbol may be meaningfully used as a procedure call with between
min and max arguments (inclusive) and that the symbols in the set
may form part of acceptable values for the arguments.

3.1.5. Requesting Transient CDs. The standard procedure get_transient_cd takes
one argument – an application of the CDName symbol from meta, which should
begin SCSCP_transient_ and returns the corresponding CD, encoded using sym-
bols from the meta CD. If no such transient CD is defined by this server it re-
turns the procedure_terminated message with OM error containing the symbol
no_such_transient_cd and the name of the CD that caused the problem.

3.1.6. Requesting general description of the service. The service provider may have
various parameters describing an offered service. The connection initiation message
contains only service name, version and identifier, and this is not enough. Instead of
this, some meta-information about the service may be structured and retrieved by
a special standard procedure get_service_description. It takes no arguments,
since it is completely determined by the server to which it was sent, and returns
the symbol service_description that takes the following three arguments as OM
strings: CAS name, CAS version and the description of the service: e.g. functions
exposed, resources, contact details of service provider, etc.

3.2. Operations with remote objects.

3.2.1. Storing, retrieving and deleting remote objects. The following symbols are
defined in the scscp2 CD [2] to work with remote objects:

store: compute an object on the server side and store it there, returning only
a cookie (actually, an OM reference) pointing to that object. This cookie
is then usable in the future to get access to the actual object;

retrieve: using the cookie that was obtained earlier by calling the store
procedure or another procedure call, return an OM object representing the
object referred by the cookie;

unbind: remove the object referred by the cookie from the server.
The service provider should be able to decide whether clients are allowed to create
remote objects or not.

4. Technical descriptions

4.1. Messages to CAS.

4.1.1. Procedure call. The procedure call is an OM object having in general case
the following structure:
<OMOBJ>

<OMATTR>
<!-- beginning of attribution pairs -->
<OMATP>

<OMS cd="scscp1" name="call_ID" />

www.manaraa.com

SCSCP SPECIFICATION 7

<OMSTR>call_identifier</OMSTR>
<OMS cd="scscp1" name="option_runtime" />
<OMI>runtime_limit_in_milliseconds</OMI>
<OMS cd="scscp1" name="option_min_memory" />
<OMI>minimal_memory_required_in_bytes</OMI>
<OMS cd="scscp1" name="option_max_memory" />
<OMI>memory_limit_in_bytes</OMI>
<OMS cd="scscp1" name="option_debuglevel" />
<OMI>debuglevel_value</OMI>
<OMS cd="scscp1" name="option_return_object" />
<!-- another possibility is "option_return_cookie" -->
<OMSTR></OMSTR>

</OMATP>
<!-- Attribution pairs finished, now the procedure call -->
<OMA>

<OMS cd="scscp1" name="procedure_call" />
<OMA>

<!-- "SCSCP_transient_" is an obligatory prefix
in the name of a transient CD -->

<OMS cd="SCSCP_transient_identifier"
name="NameOfTheProcedureRegisteredAsWebService" />

<!-- Argument 1 -->
<!-- ... -->
<!-- Argument M -->

<OMA>
</OMA>

</OMATTR>
</OMOBJ>

Remarks:

(1) The definition of the OM symbol procedure_call should state that the
first OM object is always the name of the procedure registered as WS, and
the remaining OM objects are its arguments in the required order.

(2) OM symbols for options will be introduced accordingly to the list of options
given in 2.1.1. If the need for new options is discovered, new OM symbols
for them should be added to the CD.

(3) Options may be omitted in the procedure call, and in this case their default
values must be used. The default values of options may be determined by
the service provider, and they are not regulated by the SCSCP specification.

4.1.2. Interrupt signal. By design, this message carries no content, the CAS simply
needs to be aware that it has received an interrupt.

4.2. Messages from CAS.

4.2.1. Procedure completed. The procedure completion message is an OM object
having in the most general case the following structure:

www.manaraa.com

8 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

<OMOBJ>
<OMATTR>

<!-- Attribution pairs, dependently on the debugging level
may include procedure name, OM object for the original
procedure call, etc. -->

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>call_identifier</OMSTR>
<OMS cd="scscp1" name="info_runtime" />
<OMI>runtime_in_milliseconds</OMI>
<OMS cd="scscp1" name="info_memory" />
<OMI>used_memory_in_bytes</OMI>

</OMATP>
<!-- Attribution pairs finished, now the result -->
<OMA>

<OMS cd="scscp1" name="procedure_completed" />
<!-- The result itself, may be OM symbol for cookie -->
<!-- OM_object_corresponding_to_the_result -->

</OMA>
</OMATTR>

</OMOBJ>

In case the procedure returns a cookie, the returned OM object must have the
following structure:

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>call_identifier</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed">
<OMR xref="CAS_variable_identifier" />

</OMA>
</OMATTR>

</OMOBJ>

4.2.2. Procedure terminated. The procedure termination message is an OM object
having in the most general case the following structure:

<OMOBJ>
<OMATTR>

<!-- beginning of attribution pairs -->
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>call_identifier</OMSTR>
<OMS cd="scscp1" name="info_runtime" />
<OMI>runtime_in_milliseconds</OMI>
<OMS cd="scscp1" name="info_memory" />
<OMI>used_memory_in_bytes</OMI>

www.manaraa.com

SCSCP SPECIFICATION 9

</OMATP>
<!-- end of attribution pairs -->
<!-- now the application part of the OM object -->
<OMA>

<OMS cd="scscp1" name="procedure_terminated" />
<OME>

<OMS cd="scscp1" name="name_of_standard_error"/>
<!-- Error description depends on error type -->
<OMSTR>Error_message</OMSTR>

</OME>
</OMA>

</OMATTR>
</OMOBJ>

5. Reference Implementation

In this section we describe a simple implementation suitable for use for local
connections on UNIX systems. It may also be usable under Windows provided
POSIX signals are available.

To facilitate the implementation, we use XML processing instructions (PI). All
PIs defined by SCSCP specification have the form
<?scscp [key] [attribute="value" [attribute="value" [...]]] ?>

where:
• key is an alphanumerical identifier,
• attribute is an alphanumerical identifier,
• value is an arbitrary string with the same constraints as an XML URI,

unless stated otherwise.
Additionally, we allow only those key and attribute identifiers which are described in
the present specification. Another strict restriction is that a single SCSCP process-
ing instruction must not exceed 4094 bytes in total, including <? and ?> elements.

5.1. Connection Initiation. The software wishing to provide an SCSCP service
should listen on port 26133. This port has been assigned to SCSCP by the Internet
Assigned Numbers Authority (IANA) in November 2007, see
http://www.iana.org/assignments/port-numbers.

Currently, if the port is already in use, it may try to listen to another port, for
example by increasing the port number by one until an available port is found. In
the future the SCSCP protocol will most likely provide multiplexing possibilities,
eliminating the need for this sort of measures.

When a client connects, the CAS should send it a Connection Initiation Message,
agree about the protocol version, and then commence an exchange of messages as
desribed in section 2.3.

5.1.1. Connection Initiation Message. This processing instruction is the first mes-
sage that the client receives from the server in the beginning of the SCSCP session.
Is has the following format:
<?scscp service_name="name" service_version="ver"
service_id="id" scscp_versions="list_of_supported_versions" ?>

where

www.manaraa.com

10 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

• "name" is a string containing the service name, e.g. "GAPSmallGroups",
"KANT", "MapleIntegration", "MuPAD", etc.

• "ver" is a string containing the version of the service, e.g. "11", "3.1",
"4.1.5beta", etc.

• "id" is an identifier for the service, unique within the SCSCP session (e.g.
a hostname-pid combination, a pid, etc.). Note when the hostname is used,
it is advised not to trim off any domain information from the hostname
to avoid situations when the client connected to multiple hosts may get
coinciding service identifiers.

• scscp_versions is a space-separated list of identifiers of SCSCP versions
supported by the server. Identifier of every single version of SCSCP may
contain digits, letters and dots. Versions can be listed in any order. For
example, valid value of scscp_versions is "1.0 3.4.1 1.2special".

The format of the control sequence is compulsory, and server implementations must
not change the order of the attribute/value pairs nor omit some of them. This strict
restriction makes it sure that even very simple clients should be able to parse this
control sequence.

After receiving clients incoming connection, the SCSCP server must not send to
the client anything else before the connection initiation message. The client must
wait for this ”welcome string” from the server, and must not send to the server any
data before obtaining it, since they may be ignored by the server.

5.1.2. Version negotiation. To ensure compatibility of various versions of the pro-
tocol both upwards and downwards and avoid the scenario where the software
supporting the older version of the protocol sends a valid message in that version
that is accidentally ignored by the newer version of the protocol or causes another
errors, the following version negotiation procedure should be performed.

After obtaining the connection initiation message by the client, the client informs
the server about the version of the protocol used by the client, sending the message
<?scscp version="client_version" ?>

where "client_version" is a string denoting the SCSCP versions supported by
the client (for example, "1.0" or "3.4.1" or "1.2special").

As the current rule, we require that an official SCSCP client/server should always
support at least the version "1.0".

We expect that the client choose one of the versions listed in the connection
initiation message received from the server. However, simple client may ignore
that information, because the server will be able to reject client’s incompatible
versions: after receiving the client’s SCSCP versions, the server replies with the
quit message, for example <?scscp quit reason="not supported version" ?>,
if the server does not support the version communicated by the client. If the server
supports the client’s version, it confirms this, sending to the client the processing
instruction
<?scscp version="server_version" ?>

where "server_version" is a string representing the preferred SCSCP version of
the server, and starts to wait for messages from the client.

After receiving this server’s response, the client may start an ongoing message
exchange with the server, if the server confirmed the chosen version. If the client
received the quit message, it can not continue communication with the server.

www.manaraa.com

SCSCP SPECIFICATION 11

Remember that on the connection initiation phase, the order of messages is very
strict:

• after receiving an incoming connection, the SCSCP server must not send
to the client anything else before the Connection Initiation Message.

• the client must wait for the Connection Initiation Message from the server,
and must not send to the server any data before obtaining it, since they
may be ignored by the server.

• after receiving the Connection Initiation Message the client must send its
version to the server, otherwise the server will not be able to switch to
waiting for procedure calls.

• after receiving the client’s version, the server either confirms this to the
client, and starts to wait for procedure calls, or rejects it, replying with the
quite message.

• only after receiving the server’s confirmation of the protocol version, the
client is allowed to send procedure calls to the server.

Any other data sent on this phase may be ignored.
The only other allowed control sequence during this phase of the protocol is

<?scscp quit ?> or <?scscp quit reason="explanation" ?>, issued, for exam-
ple, when one side is not able to accept any version proposed by the other side, or
issued under external circumstances, for example, sending messages that are not
allowed on this negotiation phase. In either case, the rules of quitting (see below)
are applied.

An example of successful version negotiation:
Server -> Client:

<?scscp service_name="MuPADserver" service_version="1.1"
service_id="host:26133" scscp_versions="1.0 3.4.1 1.2special" ?>

Client -> Server:
<?scscp version="1.0" ?>

Server -> Client:
<?scscp version="1.0" ?>

An example of failed version negotiation:
Server -> Client:

<?scscp service_name="MuPADserver" service_version="1.1"
service_id="host:26133" scscp_versions="1.0 3.4.1 1.2special" ?>

Client -> Server:
<?scscp version="1.5beta" ?>

Server -> Client:
<?scscp quit reason="non supported version 1.5beta" ?>

5.2. Ongoing message exchange. All messages except interrupts are delivered
as XML processing instructions and OpenMath objects in either the XML or the
binary OpenMath encoding, transmitted via the socket connection.

To locate OpenMath objects in the input/output streams, we put them into
transaction blocks. The transaction block looks as follows:
<?scscp start ?>
[a valid OpenMath object]
<?scscp end ?>

Another kind of transaction block have the form

www.manaraa.com

12 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

<?scscp start ?>
[something]
<?scscp cancel ?>

and the <?scscp cancel ?> instruction indicates that the started transaction block
is cancelled. The receiver need not to wait for a matching <?scscp end ?> direc-
tive, and must not process/evaluate the data in this transaction block.

Another instruction is <?scscp quit ?>, which may also be used in the long
form <?scscp quit reason="explanation" ?>, that indicates that the sender is
about to leave the SCSCP session. Then each side may close the socket (and at
least the receiver may safely disconnect). This instruction may appear anywhere
throughout the session.

Any data after successful version negotiation which are located outside of trans-
action blocks (apart from PIs) may be safely ignored.

5.3. Interrupt. The interrupt signal is delivered by sending SIGUSR2 to the CAS.

5.4. Other ways of implementation. We assume that in most cases it will
be enough when the SCSCP-compliant CAS will support the scheme outlined
above, since this will provide the opportunity to ”talk” in clean SCSCP with other
CASs supporting this scheme, and with the SCSCP-proxy server, that will ac-
cept SOAP/HTTP requests from the outside and then send their SCSCP content
to CASs. However, it is conceivable that the CAS itself will be able to receive
SOAP/HTTP requests without the mentioned proxy.

The same refers to the client functionality: if there is a server that accepts only
SOAP/HTTP requests, then the CAS can send an SCSCP-request to the proxy
which then will act as a proper Web services client, or might be able to wrap
SCSCP procedure call into SOAP/HTTP envelope itself.

Details of such implementations (WSDL descriptions of Web services provided
by the SCSCP-proxy server etc.) will be specified soon on the next stage of the
project.

www.manaraa.com

SCSCP SPECIFICATION 13

6. Appendix A.

The list of OM symbols defined in the scscp1 CD

The scscp1 CD [1] defines OM symbols for main types of messages and attributes
that may appear in them:

(1) Main messages:
• procedure_call
• procedure_completed
• procedure_terminated

(2) Call and response identifiers:
• call_ID

(3) Options in procedure calls:
• option_max_memory
• option_min_memory
• option_runtime
• option_debuglevel
• option_return_cookie
• option_return_object
• option_return_nothing

(4) Information attributes:
• info_memory
• info_runtime

(5) Standard errors:
• error_memory
• error_runtime
• error_system_specific

See the scscp1 CD [1] for the appropriate descriptions.

The list of OM symbols defined in the scscp2 CD

The scscp2 CD [2] defines OM symbols for special procedures, and also some
symbols that may appear in their arguments and results:

(1) Procedures for work with remote objects:
• store
• retrieve
• unbind

(2) Special procedures to obtain meta-information about SCSCP service:
• get_allowed_heads
• get_transient_cd
• get_signature
• get_service_description

(3) Special symbols:
• signature
• service_description
• symbol_set
• symbol_set_all
• no_such_transient_cd

See the scscp2 CD [2] for the appropriate descriptions.

www.manaraa.com

14 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

7. Appendix B.

Examples of OM messages
B.1 An example of the procedure_call message
GroupIdentificationService accepts permutation group G given by its ge-

nerators and returns the procedure_completed message with the number of this
group in the GAP Small Groups Library, or the procedure_terminated message
groups of order |G| are not contained in that library or identification for groups of
such order is not available in GAP.

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>
<OMS cd="scscp1" name="option_runtime" />
<OMI>300000</OMI>
<OMS cd="scscp1" name="option_min_memory" />
<OMI>40964</OMI>
<OMS cd="scscp1" name="option_max_memory" />
<OMI>134217728</OMI>
<OMS cd="scscp1" name="option_debuglevel" />
<OMI>2</OMI>
<OMS cd="scscp1" name="option_return_object" />
<OMSTR></OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call" />
<OMA>

<OMS cd="SCSCP_transient_1"
name="GroupIdentificationService" />

<OMA>
<OMS cd="group1" name="group"/>
<OMA>

<OMS cd="permut1" name="permutation"/>
<OMI> 2</OMI> <OMI> 3</OMI>
<OMI> 1</OMI>

</OMA>
<OMA>

<OMS cd="permut1" name="permutation"/>
<OMI> 1</OMI> <OMI> 2</OMI>
<OMI> 4</OMI> <OMI> 3</OMI>

</OMA>
</OMA>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>

www.manaraa.com

SCSCP SPECIFICATION 15

In the next example we retrieve the group [24,12] from GAP Small Groups
Library, creating it at the GAP side and requesting a cookie for it:
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>
<OMS cd="scscp1" name="option_return_cookie" />
<OMSTR></OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call" />
<OMA>

<OMS cd="SCSCP_transient_1" name="GroupByIdNumber" />
<OMI>24</OMI><!-- Arg1 --><OMI>12</OMI><!-- Arg2 -->

</OMA>
</OMA>

</OMATTR>
</OMOBJ>

In the next example we are sending an OM object containing MathML object:
<OMOBJ>

<OMATTR>
<OMATP>
<OMS cd="scscp1" name="call_ID"/>
<OMSTR>a1d0c6e83f027327d8461063f4ac58a6</OMSTR>
<OMS cd="scscp1" name="option_return_cookie"/>
<OMSTR></OMSTR>

</OMATP>
<OMA>
<OMS cd="scscp1" name="procedure_call"/>
<OMA>
<OMS cd="SCSCP_transient_M25" name="Evaluate" />
<OMA>
<OMS cd="altenc" name="MathML_encoding"/>
<OMFOREIGN encoding="MathML-Presentation">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>sin</mi>
<mo>⁡</mo>
<mfenced><mi>x</mi></mfenced>

</mrow>
</math>

</OMFOREIGN>
</OMA>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>

www.manaraa.com

16 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

B.2 An example of the procedure_completed message
The procedure GroupIdentificationService from the previous example re-

turns its successful output in the following form:
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>
<OMS cd="scscp1" name="info_runtime" />
<!-- The runtime in milliseconds as OM integer -->
<OMI>1234</OMI>
<OMS cd="scscp1" name="info_memory" />
<!-- Memory occupied by CAS in bytes as OM integer -->
<OMI>134217728</OMI>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed" />
<OMA>

<OMS cd="linalg2" name="vector"/>
<OMI> 24</OMI>
<OMI> 12</OMI>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>

In the case when a cookie is requested, the procedure_completed message may
look as follows (we assume the minimal debugging level with no information about
the runtime and memory used):
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed">
<OMR xref="scscp://somehost.somedomain:26133/q9t4eX" />

</OMA>
</OMATTR>

</OMOBJ>

www.manaraa.com

SCSCP SPECIFICATION 17

B.3 An example of the procedure_terminated message
This is an example how the procedure GroupIdentificationService may re-

turn an error message if the error arises at the CAS level (we assume the minimal
debugging level with no information about the runtime and memory used):
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_terminated" />
<OME>

<OMS cd="scscp1" name="error_CAS"/>
<OMSTR>Error, the group identification for groups of size\n

3628800 is not available called from\n
<function>(<arguments>) called from read-eval-loop\n
Entering break read-eval-print loop ...\n
you can ’quit;’ to quit to outer loop, or\n
you can ’return;’ to continue\n
brk>\n

</OMSTR>
</OME>

</OMA>
</OMATTR>

</OMOBJ>

One of standard errors on the SCSCP level may look as follows:

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_terminated" />
<OME>

<OMS cd="scscp1" name="error_memory"/>
<OMSTR>Exceeded the permitted memory</OMSTR>

</OME>
</OMA>

</OMATTR>
</OMOBJ>

www.manaraa.com

18 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

8. Appendix C.

Examples of special procedures
C.1 Let us consider the GroupIdentificationService from the example in the

appendix B. To find the list of procedures supported by the SCSCP server, the
client sends to the server the following message:

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call" />
<OMA>

<OMS cd="scscp2" name="get_allowed_heads" />
</OMA>

</OMA>
</OMATTR>

</OMOBJ>

The server replies then with the next message, demonstrating all possible argu-
ments of the symbol_set OpenMath symbol: symbols from transient CD, created
by the service provider, a symbol from a standard CD, a CD and a CD group.

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9053</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed" />
<OMA>

<OMS cd="scscp2" name="symbol_set"/>
<OMS cd="SCSCP_transient_1"

name="GroupIdentificationService" />
<OMS cd="group1" name="group" />
<OMA>

<OMS cd="meta" name="CDName"/>
<OMSTR>permut1</OMSTR>

</OMA>
<OMA>

<OMS cd="metagrp" name="CDGroupName"/>
<OMSTR>scscp</OMSTR>

</OMA>
</OMA>

</OMA>
</OMATTR>

</OMOBJ>

www.manaraa.com

SCSCP SPECIFICATION 19

Now the client is interested in getting the transient CD SCSCP_transient_1,
and sends to the server the procedure call displayed below.

Note that in this example we assume that the SCSCP_transient_1 CD contains
just one symbol GroupIdentificationService, so the server may equally return
just CDName with SCSCP_transient_1 instead of one symbol. In such a case the
client may then use get_transient_cd procedure to get the corresponding CD in
order to find out which namely procedures are defined in it.

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9054</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call" />
<OMA>

<OMS cd="scscp2" name="get_transient_cd" />
<OMA>

<OMS cd="meta" name="CDName"/>
<OMSTR>SCSCP_transient_1</OMSTR>

</OMA>
</OMA>

</OMA>
</OMATTR>

</OMOBJ>

In response to this procedure call, the server sends to the client the transient
CD in the following message:

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9054</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed" />
<OMA>

<OMS cd="meta" name="CD"/>
<OMA>

<OMS cd="meta" name="CDName"/>
<OMSTR>SCSCP_transient_1</OMSTR>

</OMA>
<OMA>

<OMS cd="meta" name="CDDate"/>
<OMSTR>2007-08-24</OMSTR>

</OMA>
<OMA>

<OMS cd="meta" name="Description"/>
<OMSTR>CD created by the service provider</OMSTR>

www.manaraa.com

20 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

</OMA>
<OMA>

<OMS cd="meta" name="CDDefinition"/>
<OMA>

<OMS cd="meta" name="Name"/>
<OMSTR>GroupIdentificationService</OMSTR>

</OMA>
<OMA>

<OMS cd="meta" name="Description"/>
<OMSTR>IdGroup(permgroup by gens)</OMSTR>

</OMA>
</OMA>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>

We assume that when the procedure is installed as an SCSCP procedure, the
CAS assign the name to the transient CD, saves the time of its creation, and put
some textual information, specified by the service provider, to its description. Also
at this step the service provider must specify the signature of this procedure, which
then can be retrieved by the client by sending the following message to the server:
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9055</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call" />
<OMA>

<OMS cd="scscp2" name="get_signature" />
<OMS cd="SCSCP_transient_1"

name="GroupIdentificationService" />
</OMA>

</OMA>
</OMATTR>

</OMOBJ>

The server then replies with the following message:
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9055</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed" />
<OMA>

<OMS cd="scscp2" name="signature"/>

www.manaraa.com

SCSCP SPECIFICATION 21

<OMS cd="SCSCP_transient_1"
name="GroupIdentificationService" />

<OMI>1</OMI>
<OMI>1</OMI>
<OMA>

<OMS cd="list1" name="list"/>
<OMA>

<OMS cd="scscp2" name="symbol_set"/>
<OMS cd="group1" name="group"/>
<OMA>

<OMS cd="meta" name="CDName"/>
<OMSTR>permut1</OMSTR>

</OMA>
</OMA>

</OMA>
</OMA>

</OMA>
</OMATTR>

</OMOBJ>

The list containing one symbol_set symbol in the signature means that its first
element represents the set of accepted symbols for the first (and unique) argument.
In case when the maximum number of arguments is not specified, we will use just
one symbol_set symbol not enclosed in the list. Also note that we allow procedure
calls when the actual number of arguments is smaller than the maximal, and in
this case extra entries of this list will be ignored.

C.2. An example of the signature of some generic CAS service, that does not
restrict the number of arguments, but exposes to the client the list of supported
CDs and CD groups:

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9088</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed" />
<OMA>

<OMS cd="scscp2" name="signature"/>
<OMS cd="SCSCP_transient_1" name="CAS_Service" />
<OMI>0</OMI>
<OMS cd="nums1" name="infinity"/>
<OMA>

<OMS cd="scscp2" name="symbol_set"/>
<OMA>
<OMS cd="meta" name="CDGroupName"/>
<OMSTR>scscp</OMSTR>

</OMA>
<OMA>

www.manaraa.com

22 S. FREUNDT, P. HORN, A. KONOVALOV, S. LINTON, D. ROOZEMOND

<OMS cd="meta" name="CDName"/>
<OMSTR>SCSCP_transient_0</OMSTR>

</OMA>
<OMA>
<OMS cd="meta" name="CDName"/>
<OMSTR>SCSCP_transient_1</OMSTR>

</OMA>
<OMA>
<OMS cd="meta" name="CDName"/>
<OMSTR>arith1</OMSTR>

</OMA>
<OMA>
<OMS cd="meta" name="CDName"/>
<OMSTR>transc1</OMSTR>

</OMA>
</OMA>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>

C.3. Another example demonstrates default ”universal” signature that may be
returned in case when nothing was specified during the installation of the SCSCP
procedure on the server:
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_ID" />
<OMSTR>alexk_9088</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_completed" />
<OMA>

<OMS cd="scscp2" name="signature"/>
<OMS cd="SCSCP_transient_1" name="Something" />
<OMI>0</OMI>
<OMS cd="nums1" name="infinity"/>
<OMS cd="scscp2" name="symbol_set_all"/>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>

www.manaraa.com

SCSCP SPECIFICATION 23

References

[1] D. Roozemond. OpenMath Content Dictionary scscp1.
(http://www.win.tue.nl/SCIEnce/cds/scscp1.html).

[2] D. Roozemond. OpenMath Content Dictionary scscp2.

(http://www.win.tue.nl/SCIEnce/cds/scscp2.html).

Sebastian Freundt

Fakultät II - Institut für Mathematik,

Technische Universität Berlin, Berlin, Germany
E-mail address: freundt@math.tu-berlin.de

Peter Horn
Fachbereich Mathematik, Universität Kassel, Kassel, Germany

E-mail address: hornp@mathematik.uni-kassel.de

Alexander Konovalov
School of Computer Science, University of St Andrews,

North Haugh, St Andrews, Fife, KY16 9SX, Scotland
E-mail address: alexk@cs.st-and.ac.uk

Steve Linton

School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife, KY16 9SX, Scotland

E-mail address: sal@cs.st-and.ac.uk

Dan Roozemond

Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven,
HG 9.55, Postbus 513, 5600 MB Eindhoven, Netherlands

E-mail address: d.a.roozemond@tue.nl

